IMPS Virtual Meeting - July, 2020
Some methods to detect careless responses:
Method | Example |
---|---|
Long-string analysis | {1,1,1,1,1} or {3,3,3,3,3} |
Validity item | “Please select ‘Agree’ for this item” |
Fit indices | \(l_z\) person-fit statistic (Sinharay, 2015) |
Response time | Total time to complete survey |
(Conscientiousness) | Direct Items | Reverse-Coded Items | Total Response Time (percentile) |
---|---|---|---|
Person 1 | 1,1,1,1,1,1 | 5,5,5,5,5,5 | 98.4 (5.5th) |
Person 2 | 4,3,3,4,5,4 | 1,1,1,3,3,3 | 139.9 (11th) |
Person 3 | 5,5,4,5,5,5 | 4,1,2,5,5,2 | 409.1 (83th) |
careless
packageDescriptive Model - Lognormal Model:
\[log(t_{ip}) = \tau_p - \beta_i + \epsilon_{ip} \]
Item-Explanatory Model - Linear Lognormal Test Model (LLnTM):
\[log(t_{ip}) = \tau_p - \Sigma_{k=0}^K \gamma_k X_{ik} + \epsilon_{ip}\]
where \(X_{ik}\) are item properties and \(\beta_i' = \Sigma_{k=0}^K \gamma_k X_{ik}\).
Person-Explanatory Model - Latent Regression Lognormal Model:
\[log(t_{ip}) = \Sigma_{j=1}^J \zeta_j Z_{ij} + \tau_p - \beta_i + \epsilon_{ip}\]
where \(Z_{ij}\) are person properties and \(Z_{0p} = \tau_p\).
\[log(t_{ip}) = \tau_{p} - \beta_{i} + \epsilon_{ip} \]
\(\beta_{i}\): time-consumingness parameter
Random effects:
Groups Name Variance Std.Dev. user_id (Intercept) 0.2265 0.4759 Residual 0.5153 0.7178 Number of obs: 13110, groups: user_id, 215
Fixed effects: Estimate Std. Error t value (Intercept) 0.6544715 0.0399847 16.368 char_count 0.0119571 0.0007213 16.577 is_reverseTRUE 0.1251709 0.0126499 9.895 Correlation of Fixed Effects: (Intr) chr_cn char_count -0.541 is_rvrsTRUE -0.129 -0.049
## Data: bfi_long_rev ## Models: ## item.explan: log_time ~ 1 + char_count + is_reverse + (1 | user_id) ## descriptive: log_time ~ -1 + item_name + (1 | user_id) ## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq) ## item.explan 5 29427 29464 -14708 29417 ## descriptive 63 29291 29763 -14583 29165 251.47 58 < 2.2e-16 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Records every time a respondent choses an answer or modifies their answers
Output format is JSON
and requires parsing in R
{"1":{"val":"QR~QID87~5","t":"2019-12-16T17:38:03.184Z"}, "2":{"val":"QR~QID65~28~2","t":"2019-12-16T17:38:14.369Z"}...